

The Observation of B_s Oscillations at the Tevatron

Matthew Jones

Purdue University/CDF

Fermion Masses

Gauge sector with massless fermions:

$$\mathcal{L}_F = \sum_{\psi_L} \overline{\psi}_L i \not\!\!D \psi_L + \sum_{\psi_L} \overline{\psi}_R i \not\!\!D \psi_R$$

Higgs sector:

$$\mathcal{L}_{H} = (D^{\mu}\Phi)^{*}D_{\mu}\Phi - V(\Phi)$$

General Higgs-quark couplings:

$$-\mathcal{L}_{HF} = \mathbf{f}_u \overline{\mathbf{q}}_L' \tilde{\mathbf{\Phi}} \mathbf{u}_R' + \mathbf{f}_d \overline{\mathbf{q}}_L' \mathbf{\Phi} \mathbf{d}_R' + h.c.$$

Spontaneous symmetry breaking:

$$\mathbf{m}_q' = \frac{v}{\sqrt{2}} \mathbf{f_q} \quad \square \rangle \quad \mathbf{m} = \mathbf{S}_L^{\dagger} \mathbf{m}' \mathbf{S}_R$$
diagonalize

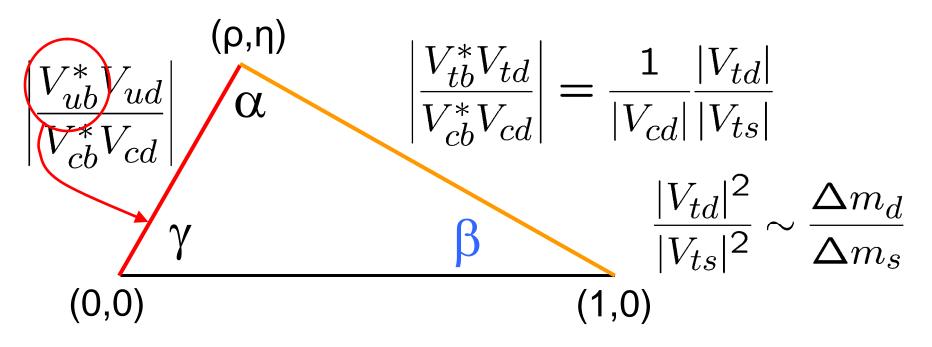
CKM Sector of the Standard Model

$$\mathbf{V}_{CKM} = \mathbf{S}_{u,L}^{\dagger} \mathbf{S}_{d,L}$$

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- One of several explanations for CP violation observed in $K^0_L \to \pi^+\pi^-$
- If this was the source of CP violation in the kaon system, then large effects should be observed in B decays.

3


The CKM Matrix

Unitary 3x3 matrix → 4 parameters:

- $\lambda = 0.2272 \pm 0.0010$ A = 0.809 ± 0.014
- Already well measured

 (prost recent results from CKMFitter)
- CP violation → η≠0
- Need a precise determination of V_{td}

The Unitary Triangle

- Try to over-constrain its shape:
 - $-A_{CP}$ in $B^0 \rightarrow J/\psi K_S^0$: $\sin 2\beta = 0.72 \pm 0.02$
 - Length of one side from $b ou \ell \overline{
 u}_\ell$
 - Length of other side from $\Delta m_d/\Delta m_s$...

Last Year's Unitary Triangle

• Next strong constraint will come from $\Delta m_{s}.$

B_d^0/B_s^0 Mixing

Quark flavor eigenstates:

$$B_d^0 = (\bar{b}d) \qquad B_s^0 = (\bar{b}s)$$

$$\overline{B}_d^0 = (b\bar{d}) \qquad \overline{B}_s^0 = (b\bar{s})$$

Time dependence:

$$i\hbar \frac{d}{dt} \left(\frac{B^0}{B^0} \right) = \left(\frac{M}{\delta} \frac{\delta}{M} \right) \left(\frac{B^0}{B^0} \right)$$

• CP eigenstates:

$$|B_H\rangle \sim |B^0\rangle - |\overline{B}^0\rangle, M_H = M + \delta$$

 $|B_L\rangle \sim |B^0\rangle + |\overline{B}^0\rangle, M_L = M - \delta$

Mass difference: Δm = M_H – M_L

Time Evolution

QCD produces flavor eigenstates:

$$|B^{0}\rangle \sim |B_{H}\rangle + |B_{L}\rangle$$

 $|\overline{B}^{0}\rangle \sim |B_{H}\rangle - |B_{L}\rangle$

- Interference between CP eigenstates
- Decay identifies final quark flavor:

$$\mathcal{P}_{\text{same/opposite}}(t) = \frac{e^{-\Gamma t}}{2\Gamma} (1 \pm \cos \Delta mt)$$

• Fit for Δm_s using this model, taking into account several experimental limitations.

$B_d^{\rm U}/B_s^{\rm U}$ Mixing

$$\overline{B}_{s}^{0} \begin{cases} b & \xrightarrow{V_{tb}} & V_{ts}^{*} \\ \hline s & \xrightarrow{V_{tb}} & \overline{b} \end{cases} \qquad \overline{s} \xrightarrow{V_{tb}}$$

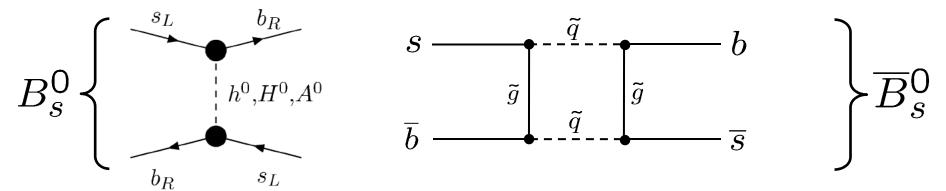
$$b \xrightarrow{V_{tb}} V_{ts}^* \qquad b \xrightarrow{V_{ts}} S$$

$$\overline{s} \xrightarrow{V_{ts}} V_{tb}^* \qquad \overline{b}$$

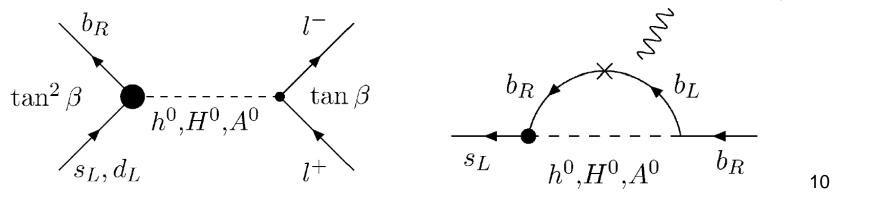
$$\Delta m_s \sim m_{B_s} f_{B_s}^2 B_{B_s} |V_{tb} V_{ts}^*|^2$$

 $\Delta m_d \sim m_{B_d} f_{B_d}^2 B_{B_d} |V_{tb} V_{td}^*|^2$

$$\frac{\Delta m_s}{\Delta m_d} = \xi^2 \frac{m_{B_s}}{m_{B_d}} \frac{|V_{ts}|^2}{|V_{td}|^2}$$
 Δm_d and masses are well measured


$$\xi = \frac{f_{B_s}}{f_{B_d}} \sqrt{\frac{B_{B_s}}{B_{B_d}}} = 1.210^{+0.047}_{-0.035}$$

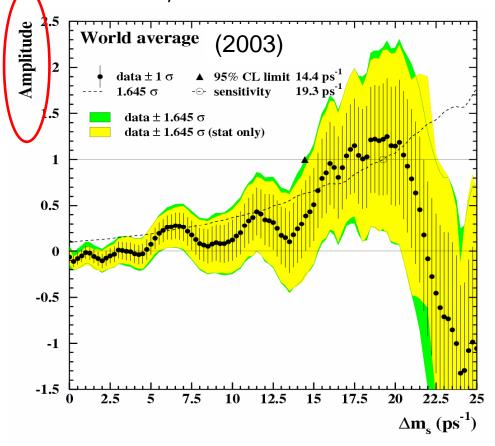
From lattice QCD


(hep-lat/0510113)

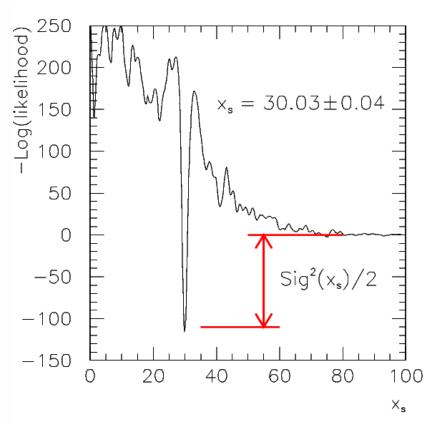
Contributions from New Physics?

- FCNC suppressed in Standard Model
- Contribution from new physics scenarios:

• Also affects $B_s^0 \to \mu^+\mu^-, B \to X_s\gamma, \delta a_\mu, \dots$

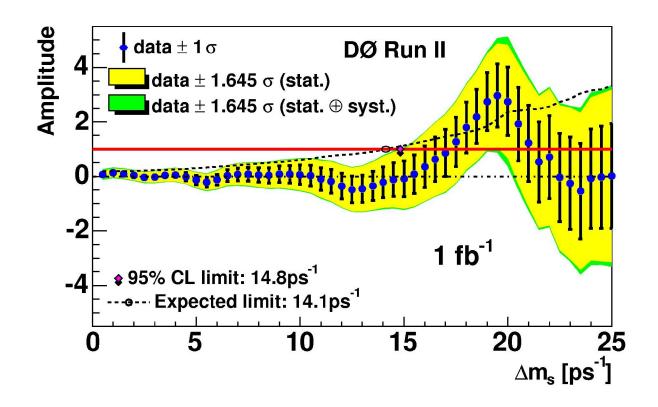

Search for B_s Oscillations

- Four steps:
 - Reconstruct B_s^0 decays
 - Measure proper decay time precisely
 - Identify initial flavor state $(B_s^0 \text{ or } \overline{B}_s^0?)$ Statistical power reduced by efficiency and mistag fraction (ϵD^2)
 - Is the data consistent with oscillations at a given mixing frequency?
- Significance of an observation:

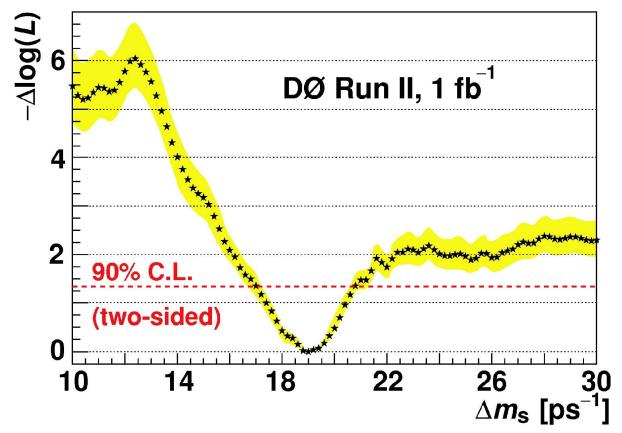

$$Sig(\Delta m_s) = \sqrt{\frac{S}{S+B}} \sqrt{\frac{S\epsilon D^2}{2}} e^{-\sigma_{ct}^2 \Delta m_s^2/2}$$

Amplitude Scans and Likelihood

 $p_{ ext{mix/unmix}}(t) \sim (1 \pm \mathcal{A}) \mathcal{D}_{ ext{tag}} \cos \Delta m_s t)$



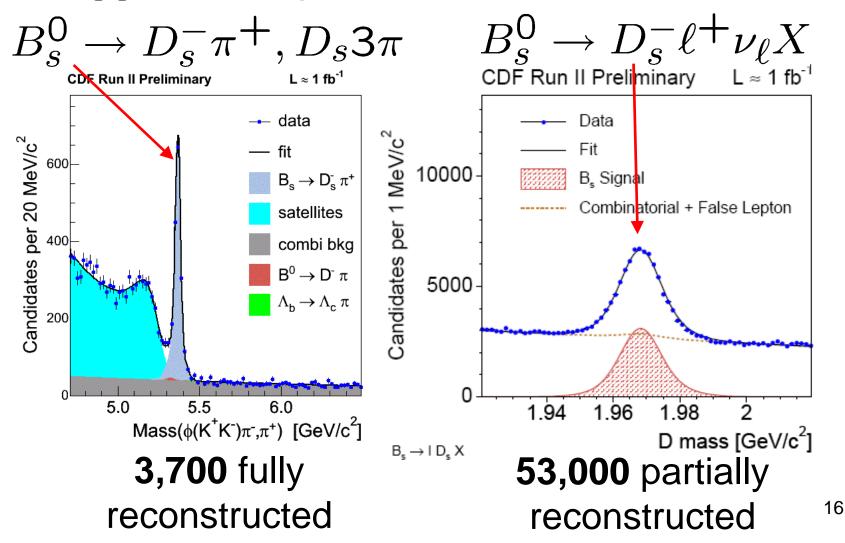
Expect A=1 at true Δm_s


Significance from depth of log-likelihood ratio 12

Result from the DØ Experiment

- March 12, Moriond EW 2006
- Result from DØ: $17 < \Delta m_s < 21 \text{ ps}^{-1}$ (90% CL)

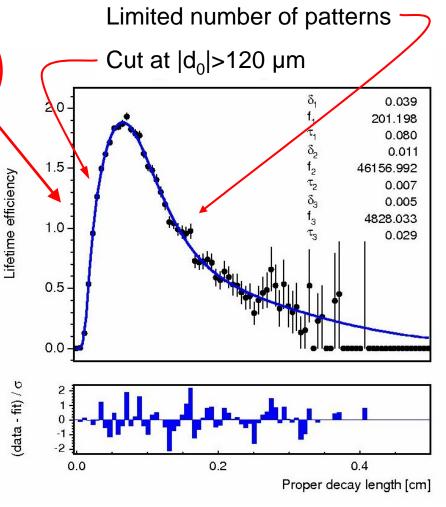
Result from the DØ Experiment


- March 12, Moriond EW 2006
- Result from DØ: $17 < \Delta m_s < 21 \text{ ps}^{-1}$ (90% CL)

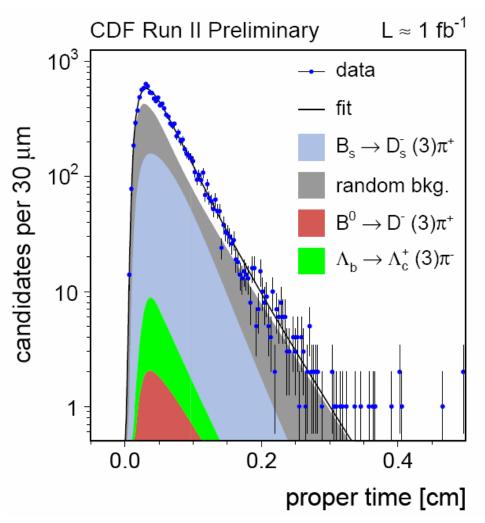
The CDF Detector

Signal Reconstruction

Trigger on displaced tracks and look for:


Proper Decay Time

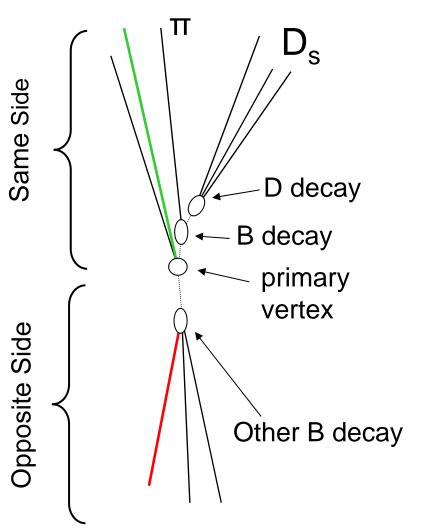
- Proper decay time: $ct = L_{xy} M/p_T$
- Impact parameter trigger → lifetime bias


 $p(t;\tau) = \left(\frac{e^{-t/\tau}}{\tau} * R(t)\right) \underbrace{\epsilon(t)}_{\text{lifetime resolution}}$

 Efficiency calculated using B Monte Carlo and an emulation of the trigger

Checked using B⁺→J/ψK⁺

Lifetime Measurements

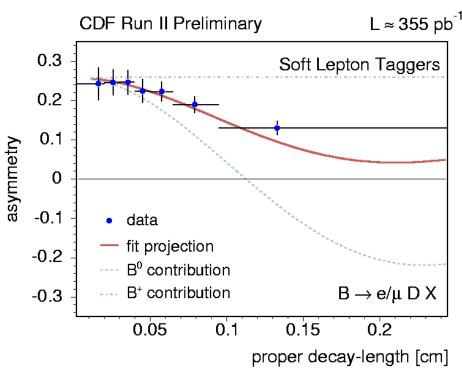

Decay	Lifetime (ps)
$B^0 \rightarrow D^- \pi^+$	1.508 ± 0.017
$B^- \rightarrow D^0 \pi^-$	1.638 ± 0.017
$B_s^0 o D_s(3)\pi$	1.538 ± 0.040

Still dominated by statistical uncertainty

World Averages: hep-ex/0603003

Decay	Lifetime (ps)
$\tau(B^0)$	1.527 ± 0.008
$\tau(B^+)$	1.643 ± 0.010
$ au(B_s^0)$	1.454 ± 0.040

Initial State Flavor Tagging


Two techniques used:

- Opposite Side Tag
 - QCD produces $b\overline{b}$ pairs
 - Look for decay products of the *other* B hadron (eg, leptons)
 - Combined effectiveness:

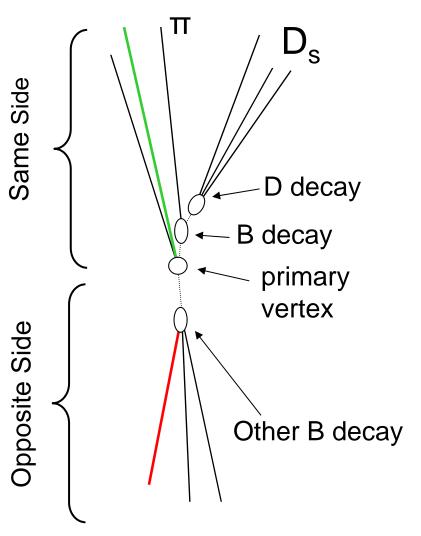
$$\varepsilon D^2 = 1.5\%$$

Same Side Tag

Cross Checks with B⁰/B[±]

$$\Delta m_d = 0.503 \pm 0.065 \text{ ps}^{-1}$$
 (hadronic)

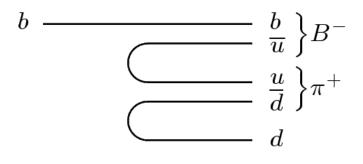
$$\Delta m_d = 0.497 \pm 0.032 \text{ ps}^{-1}$$
 (semi-leptonic)

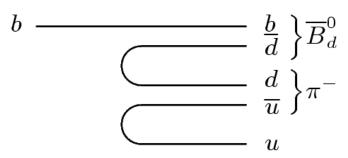

$$\Delta m_d = 0.507 \pm 0.004 \text{ ps}^{-1}$$
 (World average)

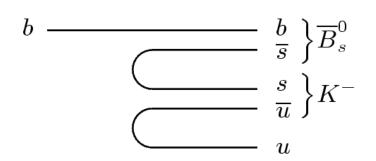
20

$$\mathcal{P}_{mix}(t) \sim rac{e^{-t/ au}}{ au} \left(1 - \mathcal{D} \cos(\Delta m_d t)
ight)
ightarrow rac{e^{-t/ au}}{ au} \left(1 + \mathcal{S}_{\mathcal{D}} \mathcal{D} \cos(\Delta m_d t)
ight)$$

 Account for any difference between signal and calibration samples.

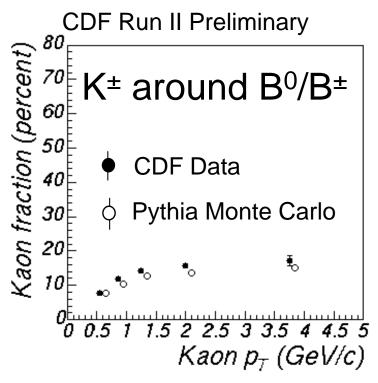

Initial State Flavor Tagging




Two techniques used:

- Opposite Side Tag
 - QCD produces $b\overline{b}$ pairs
 - Look for decay products of the *other* B hadron (eg, leptons)
 - Combined effectiveness: $\epsilon D^2 = 1.5\%$
- Same Side Tag
 - Look for particles produced in association with the B_s

Same Side Kaon Tag

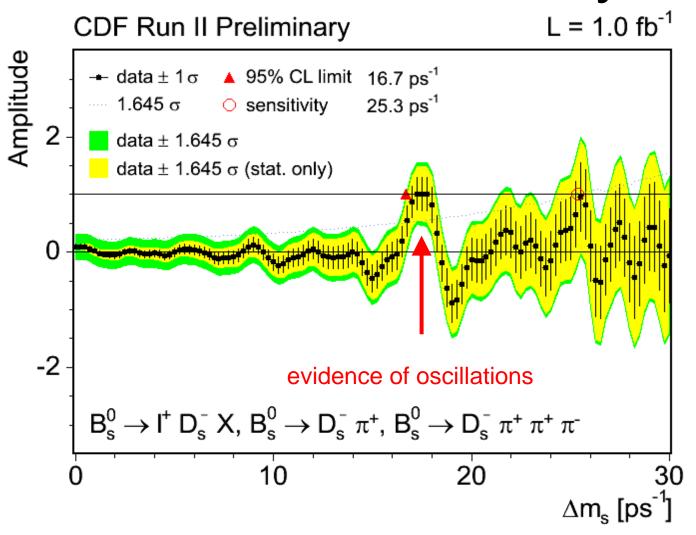

- Local quark flavor conservation in QCD
- Expect more kaons with B_s mesons
- Kaon charge identifies the initial B_s flavor
- A primary motivation for building TOF detector.

Original estimates based on Pythia (Lund string model):

$$\epsilon D^2 \sim 4\%$$

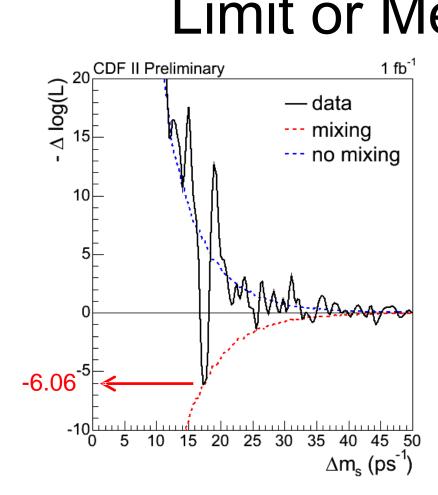
Same Side Kaon Tag

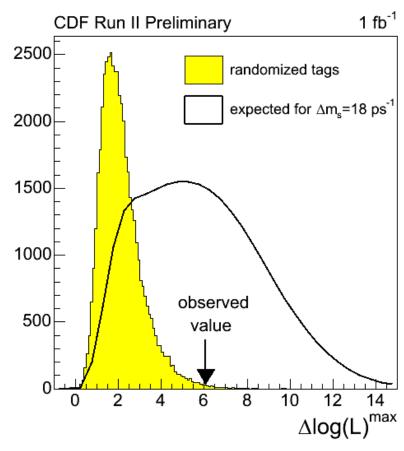
Count charged kaons around B⁰, B⁺, B_s:



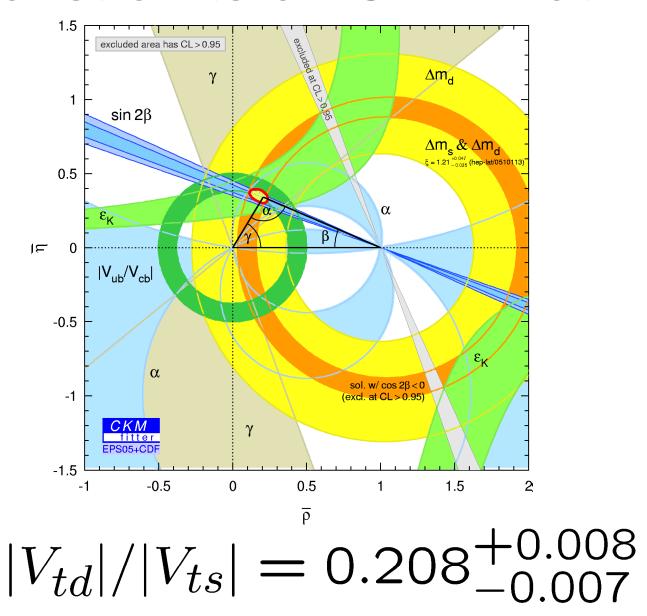
- Find more kaons produced in association with B_s
- Qualitative agreement with Monte Carlo

An Exciting Spring:


- March 12: DØ result released at Moriond
- March 14: CDF unblinded an analysis of about ¹/₃ of the hadronic decay data
 - Observed evidence for oscillations
- Next few weeks:
 - Validation of remaining data
 - Inclusion of semi-leptonic analysis
 - Establish criteria for quoting a limit or a measurement


Unblinded CDF Analysis

Released April 11, presented at <u>FPCP 2006</u> on April 12.

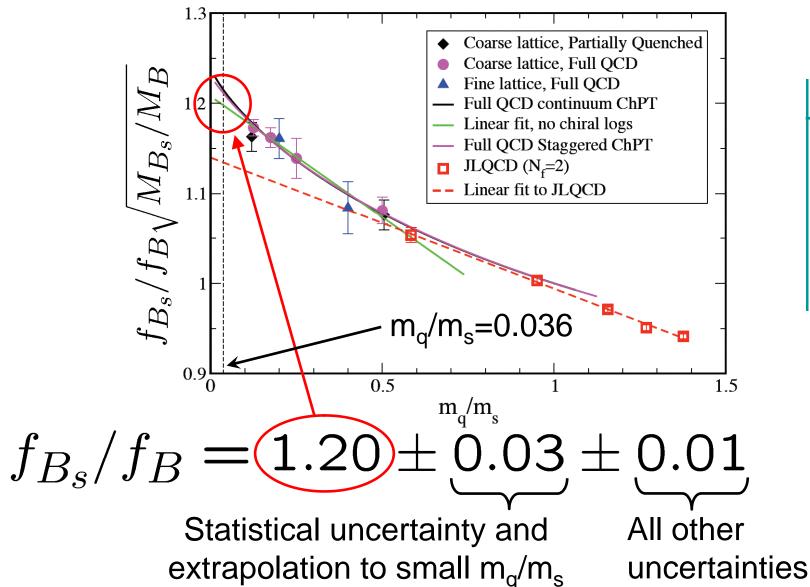

Limit or Measurement?

- Probability of statistical fluctuation: 0.5%
- Measure $\Delta m_s = 17.33^{+0.42}_{-0.21} \pm 0.07~\mathrm{ps}^{-1}$

Constraints on CKM matrix

Future Prospects $\frac{\Delta m_s}{\Delta m_d} = \xi^2 \frac{m_{B_s} |V_{ts}|^2}{m_{B_d} |V_{td}|^2}$

$$\frac{\Delta m_s}{\Delta m_d} = \xi^2 \frac{m_{B_s}}{m_{B_d}} \frac{|V_{ts}|^2}{|V_{td}|^2}$$


$$\Delta m_s = 17.33^{+0.42}_{-0.21} \pm 0.07 \text{ ps}^{-1}$$

 $\Delta m_d = 0.502 \pm 0.007 \text{ ps}^{-1}$

Already limited by input from Lattice QCD

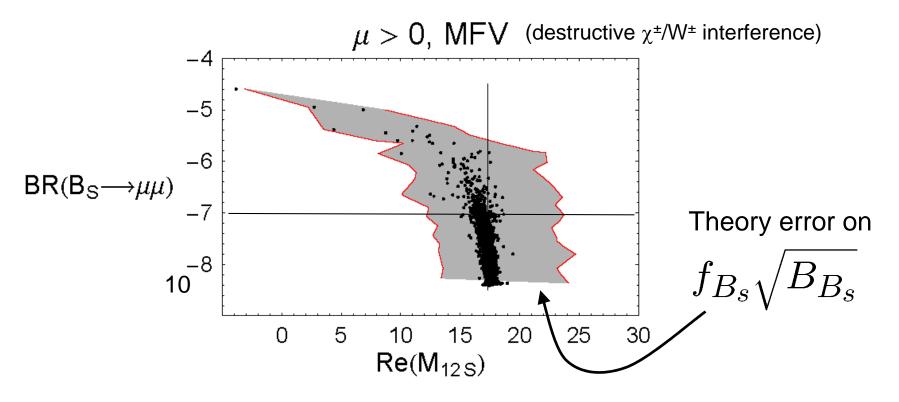
$$\xi = \frac{f_{B_s}}{f_{B_d}} \left(\frac{B_{B_s}}{B_{B_d}} \right) = 1.210^{+0.047}_{-0.035}$$
 (3.8%)
$$\frac{B_{B_s}}{B_{B_d}} = 1.017 \pm 0.016^{+0.056}_{-0.017}$$
From JLQCD Collab. (hep-ph/0307039)

Contributes 2.9% to ξ

Lattice Input from HPQCD+MILC

nep-lat/0507015

Constraints on New Physics


$$\Delta m_s = 17.33^{+0.42}_{-0.21} \pm 0.07 \text{ ps}^{-1} \text{ (CDF)}$$

$$\Delta m_s = \begin{cases} 21.7^{+5.9}_{-4.2} \text{ ps}^{-1} & \text{(CKMFitter)} \\ 21.5 \pm 2.6 \text{ ps}^{-1} & \text{(UTFit)} \end{cases}$$

- Several different assumptions about flavor structure of SUSY models
 - Parameters in some models are constrained
 - Others are not...
- Correlated with other experimental results on FCNC ($B \to X_s \gamma$, $B_s^0 \to \mu^+ \mu^-$, ...)

Example: Impact on MFV Scenarios

Br(
$$B_s \to \mu^+ \mu^-$$
) < 1.0 × 10⁻⁷ @95% C.L. (2006 CDF result)

Lunghi, Porod, Vives: hep-ph/0605177

Summary

$$\Delta m_s = 17.33^{+0.42}_{-0.21} \pm 0.07 \text{ ps}^{-1}$$

$$|V_{td}|/|V_{ts}| = 0.208^{+0.008}_{-0.007}$$

- Unlikely to be a statistical fluctuation
- Next improvements from lattice results... $f_{D}+/f_{D_{s}^{+}} \text{measured to few \% at CLEO-c and BES-III}$
- Long term future uncertainty: ~1%?
- A milestone has been reached in the world-wide heavy flavor physics program!
 - But there are still many more

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.